On the Feasibility of Training Neural Networks with Visibly Watermarked Dataset

Sanghyun Hong*, Tae-hoon Kim^, Tudor Dumitras*, Jonghyun Choi°

Overview

• Data collected separately by enterprises and users is hard to be shared with others because shared data can be stolen.

Threat Model

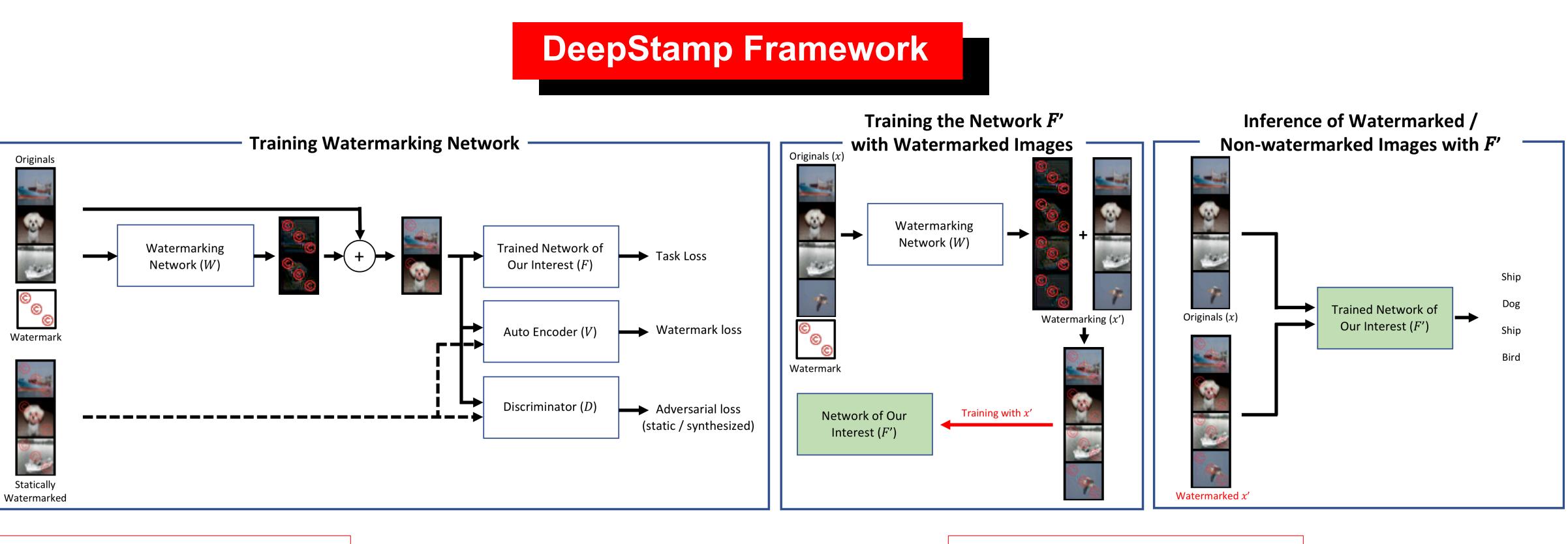
Company A

Company/User B

- Company A wants to share a dataset collected from the users with Company B
- Company A still wants to claim the ownership of the data to prevent Company B resells the data to others or leaks the data

Our Solution

• Prior work:


- Cryptographic solutions (Homomorphic encryption or MPCs) are computationally expensive and, once data is shared, they cannot prevent claiming ownership from B
- Solutions conceal secrets (Stenography and Invisible watermarking) are susceptible to data augmentations/changes

• Our solution:

• Use visible watermarking on datasets shared with other companies and users

• In Training:

• In Stamping:

Objectives

• Purpose of the visible watermarks on datasets

 Visibly Intact: watermarks embedded to data clearly visible to human • Hard to Remove: watermarks are hard to be removed by adversaries • *Minimize Accuracy Drops:* a network trained with watermarked data minimizes the accuracy drop compared to the clean network

DeepStamp

• Training a watermarking network (W) using clean data and a watermark as inputs with three discriminator networks (F, V, D) • Discriminators use the data with synthesized watermarks from W and the static watermarked data as their counterparts Leverages the Generative Multi-Adversarial Network (GMAN)

• Using the trained watermarked network (W), synthesize the optimal watermarks for clean data and watermark

Preliminary Results

าร	Network	Baseline	Static	DeepStamp
es	AlexNet	82.74	78.50	79.59
	VGG16	94.00	92.71	92.74
	ResNet50	95.37	94.88	94.18

- Using visible watermarking causes the acc. drops in all cases, but the drops are minimal when the network capacity is high
- DeepStamp framework can **minimize the** accuracy drop further than the static (additive) watermarking method(s).
 - [Results are mentioned in the paper] Our watermarked dataset can be used to train other networks (the data is **transferrable**)